Syllabus B. Sc. (nformation Technology) (Sem.- III)

Title of Paper APPLIED MATHEMATICS

Sr.No.	Heading	Particulars	
1	Description the course :	This course is designed for developing	
	Including but Not limited to:	competency of the students in the applications	
		of various mathematical concepts. It is equipped	
		with Complex numbers, Laplace transform,	
		Inverse Laplace transform, Differential equations	
		of first order with first degree and higher degree.	
		This course introduces basic concepts of Algebra	
		and prepares students to study further courses in linear and abstract algebra.	
2	Vertical :	Vocational Skill Course	
3	Type:	Theory	
	Type.	·	
4	Credits:	2 credits (1 credit = 15 Hours for Theory in a semester, Total 30 hours)	
5	Hours Allotted :	30 Hours	
6	Marks Allotted:	50 Marks	
7	Course Objectives(CO):		
	CO1: Ability to interpret the mathematical results in physical or practical terms for		
	complex numbers.		
	CO2: Know and to understand various types of methods to solve Laplace transform.		
	CO3: Apply the knowledge of Laplace Transforms to solve the problems.		
	CO4: Know and to understand various types of methods to solve differential equation.		
	CO5: Apply the knowledge of differential equations to solve the problems.		
	CO6: Inculcate the habit of Mathematical Thinking through Indeterminate forms.		
	coo. medicate the habit of Mathematical Minking through matternance forms.		
8	Course Outcomes (OC):		
	OC 1. Familiar with the various forms and operations of a complex number.		
	OC 2: Find the Laplace transform of a function of using definition.		
	OC 3: Find the Inverse Laplace transform of a function of using definition.		
	OC 4: Solve Differential equations of first degree and first order.		
	OC 5: Solve Differential equations of first degree and higher order.		
9	Modules:- Module 1:		
	1.1 Complex Numbers: Complex number, Equality of complex numbers,		
	-	number (Argand's Diagram), Polar form	
	of complex numbers. Polar form of x+iy for different signs of x.y, Exponential form of complex numbers, Mathematical operation with complex numbers and		
	•	iagram, Circular functions of complex 15 Hrs	
		ction. Relations between circular and	
	hyperbolic functions, Inverse hyperbo		
	1	on. Definition of the Laplace Transform,	
	Table of Elementary Laplace Transforn	ns. Theorems on Important Properties of	

	Laplace Transformation, First Shifting Theorem, Second Shifting Theorem,			
	Convolution Theorem, Laplace Transform of Derivatives.			
	1.3 Inverse Laplace Transform: Shifting Theorem, Partial fractions Methods,			
	Use of Convolution Theorem, Solution of Ordinary Linear Differential Equations			
	with Constant Coefficients, Laplace Transformation of Special Function,			
	Periodic Functions, Heaviside Unit Step Function, Dirac-delta Function (Unit			
	Impulse Function).			
	Module 2:			
	2.1 Equation of the first order and of the first degree: Separation of variables, 15 Hrs			
	Equations homogeneous in x and y, Non-homogeneous linear equations, Exact			
	differential Equation, Integrating Factor, Linear Equation and equation			
	reducible to this form, Method of substitution.			
	2.2 Differential equation of the first order of a degree higher than the first:			
	Introduction, Solvable for p (or the method of factors), Solve for y, Solve for x,			
	Clairaut's form of the equation, Method of Substitution.			
	2.3 Linear Differential Equations with Constant Coefficients: Introduction,			
	The Differential Operator, Linear Differential Equation $f(D) y = 0$, Different			
	cases depending on the nature of the root of the equation $f(D) = 0$, Linear differential equation $f(D) = 0$.			
	differential equation $f(D) y = X$, The complimentary Function, The inverse operator $1/f(D)$ and the symbolic expression for the particular integral,			
10	Books and References:	ie particulai liitegrai,		
10				
	1. A text book of Applied Mathematies Vol I, P. N. Wartikar and J. N. Wartikar, Pune Vidyathi Griha, 7*, 1995			
	2. A text book of Applied Mathematies Vol II , P. N. Wartikar and J. N. Wartikar, Pune			
	Vidyathi Griha,7" .1995	14. Wartikar and 3. 14. Wartikar, Fanc		
	3. Higher Engineering Mathematies, Dr. B. S.Grew	al, Khanna Publications.		
12	Internal Continuous Assessment: 40%	Semester End Examination: 60%		
13	Continuous Evaluation through:	Format of Question Paper: External		
	Class test of 1 of 15 marks	Examination (30 Marks)– 1 hr		
	Class test of 2 of 15 marks	duration		
	Average of the two: 15 marks			
	Quizzes/ Presentations/ Assignments: 5 marks			
	Total: 20 marks			
14	Format of Question Paper: (Semester End Exami	nation: 30 Marks. Duration:1 hour)		

Q1: Attempt any two (out of four) from Module 1 (15 marks) Q2: Attempt any two (out of four) from Module 2 (15 marks)

Q1: Attempt any three (out of five) from Module 1 (15 marks) Q2: Attempt any three (out of five) from Module 2 (15 marks)

Or